MMI-MAP and MPE-MAP for acoustic model adaptation

نویسندگان

  • Daniel Povey
  • Mark J. F. Gales
  • Do Yeong Kim
  • Philip C. Woodland
چکیده

This paper investigates the use of discriminative schemes based on the maximum mutual information (MMI) and minimum phone error (MPE) objective functions for both task and gender adaptation. A method for incorporating prior information into the discriminative training framework is described. If an appropriate form of prior distribution is used, then this may be implemented by simply altering the values of the counts used for parameter estimation. The prior distribution can be based around maximum likelihood parameter estimates, giving a technique known as I-smoothing, or for adaptation it can be based around a MAP estimate of the ML parameters, leading to MMI-MAP, or MPE-MAP. MMI-MAP is shown to be effective for task adaptation, where data from one task (Voicemail) is used to adapt a HMM set trained on another task (Switchboard). MPE-MAP is shown to be effective for generating gender-dependent models for Broadcast News transcription.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

fMPE-MAP: improved discriminative adaptation for modeling new domains

Maximum a posteriori (MAP) adaptation and its discriminative variants, such as MMI-MAP (maximum mutual information MAP) and MPE-MAP (minimum phone error MAP), have been widely applied to acoustic model adaptation. This paper introduces a new adaptation approach, fMPE-MAP, which is an extension to the original fMPE (feature minimum phone error) algorithm, with the enhanced ability in porting Gau...

متن کامل

Regularized feature-space discriminative adaptation for robust ASR

Model-space adaptation techniques such as MLLR and MAP are often used for porting old acoustic models into new domains. Discriminative schemes for model adaptation based on MMI and MPE objective functions are also utilized. For feature-space adaptations, one extension to the wellknown feature-space discriminative training (fMPE) algorithm, feature-space discriminative adaptation, was recently p...

متن کامل

Discriminative map for acoustic model adaptation

In this paper we show how a discriminative objective function such as Maximum Mutual Information (MMI) can be combined with a prior distribution over the HMM parameters to give a discriminative Maximum A Posteriori (MAP) estimate for HMM training. The prior distribution can be based around the Maximum Likelihood (ML) parameter estimates, leading to a technique previously referred to as I-smooth...

متن کامل

Multifactor adaptation for Mandarin broadcast news and conversation speech recognition

We explore the integration of multiple factors such as genre and speaker gender for acoustic model adaptation tasks to improve Mandarin ASR system performance on broadcast news and broadcast conversation audio. We investigate the use of multifactor clustering of acoustic model training data and the application of MPE-MAP and fMPE-MAP acoustic model adaptations. We found that by effectively comb...

متن کامل

Linear Transforms in Automatic Speech Recognition: Estimation Procedures and Integration of Diverse Acoustic Data

Linear transforms have been used extensively for both training and adaptation of Hidden Markov Model (HMM) based automatic speech recognition (ASR) systems. Two important applications of linear transforms in acoustic modeling are the decorrelation of the feature vector and the constrained adaptation of the acoustic models to the speaker, the channel, and the task. Our focus in the first part of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003